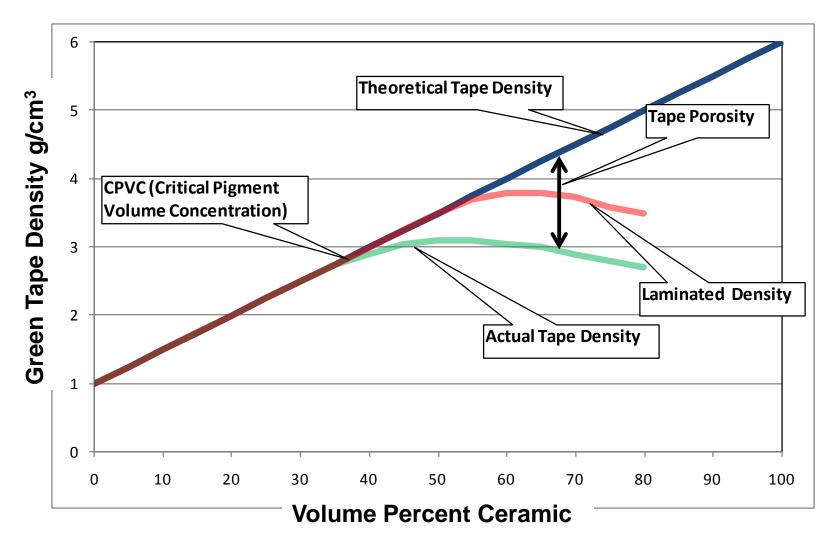
Tape Casting Formula Development

Polymer Innovations, Inc. Vista, CA 92081 USA www.polymerinnovations.com Phone: 760-598-0500

Formulation Steps

- Determine desired loading.
- Adjust formula for correct viscosity.
- Ensure ceramic is dispersed properly.
- Measure tape properties and compare to needs.
- Make a number of tape trials within above parameters looking at effects of additives.
- Optimize tape characteristics per needs.
- Trouble shoot tape defects if they exist.

Loading


- Most critical part is to target appropriate green tape porosity aim.
 - If tape density is zero it will entrap air bubbles between layers during stacking.
 - Typical stacking process porosity goal would be about 10-20 %.
 - This is determined by comparing actual measured density to theoretical density (see loading curve).
 - Need to know the density of the ceramic powder.
 - Typically binder density is approximated by 1

Volume Vs Weight Loading

- Typical tendency is to use weight loading but since ceramic densities vary widely volume % calculations are more universal.
- Tape casting is similar to paint technology.
- Pigment loading curve (next slide).
- Porosity starts and film properties change dramatically at loadings above the CPVC (critical pigment volume concentration).
- Above the CPVC there is not enough binder to fill the pores between the ceramic particles.
 - The ceramic particles are coated with binder and stuck together with open pores in between like candy coated popcorn.

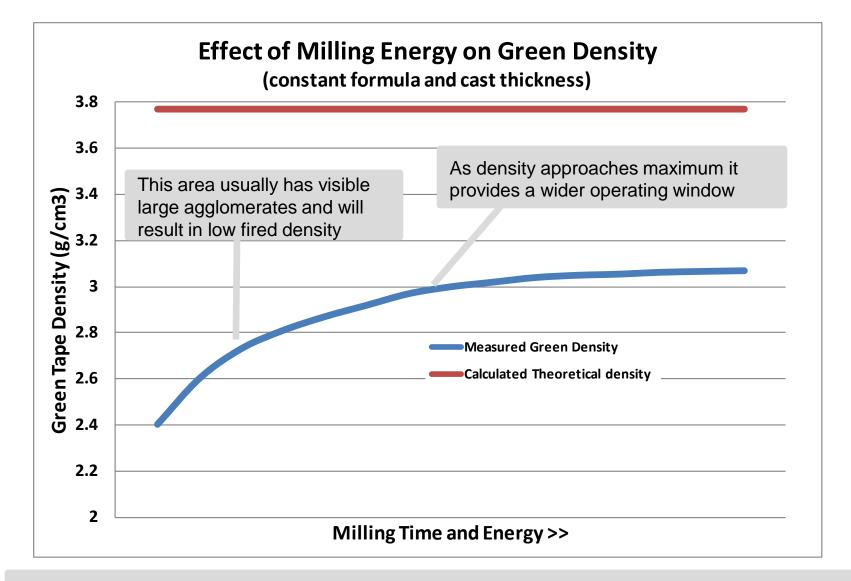
Loading Curve (Pigment Loading Curve)

Example of 6 g/cm³ ceramic in binder with density of 1 g/cm³

Volume Loading Calculation Example

				Approximate			
				density of	Calculated volume	Weight %	Volume %
	Weight	Solids of	Solids weight	component after	of each component	ceramic in the	ceramic in
Component	grams	component	(after drying)	drying (g/cm3)	after drying (cm3)	tape	the tape
Ceramic	66	100%	66	5.9	11.19	90.04	60.5
Water	15	0%	0	1	0.00	0.00	0.0
WB4101	18	35%	6.3	1	6.30	8.59	34.0
PL002 plasticizer	1	100%	1	1	1.00	1.36	5.4
Total	100		73.3		18.49		
	Weight of				grams		
	Volume of dried tape (exclude air)			18.49			
	Theoretica	al tape density			tape volume (ignorin	ng air)	
					g/cm3		
	Example measured tape density				g/cm3		
	Calculated	porosity (%)		11.1	%		
just use 1. We start out with 100 grams o by its density and adding these 73.3g/18.49 cm3 or 3.96 g/cm term used in the paint industry theoretical tape density we car	f slip as shown a e up the total volu 3. We usually ca v and illustrated ir n calculate a use aminated volume	bove but after drying it ume of the tape (ignorin all this the theoretical dr n the volume loading cu ful estimate for the tap the typically we cut the tap	will become 73.3 grams d ng any air which may be in ensity. Typically at the higl irve on the next tab). Ther e porosity. For most MLCC ape into pieces of the sam	ue to the loss of water. If w the tape) is 18.49 cm3. Th her loading levels of cerami efore there is porosity in the processes a porosity of at e dimensions and stack the	e calculate the volume of each berefore if there were no porosit ic in tape we are beyond the cri e tape. By comparing the meas bout 5-25% is typical. To measu em (by simply laying them on to	component by dividing i y the density of the tape tical pigment volume loa ured tape density to the ire the tape density the v	is weight ding (a

Practical Loading Curves


- It is not necessary to run a full range of sample loadings.
- Typical focus is in the 50-70 volume % range and it can be extended if the desired porosity level is not obtained.
- Milling time and dispersion also effect packing density and therefore CPVC.

Green Porosity Goals

- Thicker tapes need less porosity:
 - ~5-10% for 50+ microns
 - -~10-20% for 15 microns
- Tape which has siPET backing still in place during stacking needs even more porosity to avoid bubble entrapment.

-~15-30%

- Ceramic with finer particles results in finer interconnected pores which needs to be on high end of porosity range.
- Bottom line: use a practical test and increase porosity if entrapped air occurs.

For a given tape formula (and tape thickness) the more milling/dispersing energy the higher the green density becomes (assuming an appropriate level of porosity was designed in with the loading).
In early stages the density goes up faster but reaches a limit of little change with more milling.
For regular ball milling the larger the ball mill the less time is typically required for good milling.
To a lesser extent if the same slurry is cast thicker it tends to be a little more dense than thin cast tape.